"... those sciences are vain and full of errors that are not born from experiment, the mother of all certainty, and that do not end with one clear experiment."

Leonardo da Vinci, 1452-1519
"When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge but you have scarcely, in your thoughts, advanced to the stage of science."

Z 1.3 The Scientific Method (good approach to use in lab)

Science (Latin scientia, scire, to know) provides a framework for systematically studying ourselves, our environment, and the universe. Progress in science is cumulative - building upon and extending prior knowledge via what has come to be known as the scientific method: the interplay of observations, judicious reasoning, predictions and new experiments to test the predictions.

Chemistry is broadly concerned with the analysis of substances (composition, structure, properties), their transformation into other substances (chemical reactions), and the energy changes that accompany these transformations.

Experiments require the ability to transform, characterize, and/or measure matter - anything that occupies space and has mass.

H 1-1, Table 1-3 Units of Measurement

| Fundamental SI Units | | | SI Prefixes | | | | | |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Quantity | Unit | Symbol | Factor | Prefix | Symbol | Factor | Prefix | Symbol |
| length | meter | m | 10^{-1} | deci | d | 10 | deca | da |
| mass | kilogram | kg | 10^{-2} | centi | c | 10^{2} | hecto | h |
| time | second | s | 10^{-3} | milli | m | 10^{3} | kilo | k |
| temperature | kelvin | K | 10^{-6} | micro | $\mathrm{\mu}$ | 10^{6} | mega | M |
| amount of substance | mole | mol | 10^{-9} | nano | n | 10^{9} | giga | G |
| electric current | ampere | A | 10^{-12} | pico | p | 10^{12} | tera | T |
| luminous intensity | candela | cd | 10^{-15} | femto | f | 10^{15} | peta | P |
| | | | 10^{-18} | atto | a | 10^{18} | exa | E |
| | | | 10^{-21} | zepto | z | 10^{21} | zetta | Z |
| | | | 10^{-24} | yocto | y | 10^{24} | yotta | Y |

H 3-3; Z A1.5-A1.6 Precision, Accuracy, Experimental Error

accuracy - deviation from true value
(systematic error)
precision - agreement of replicate measurements (random error)
mean

Measured
Value
standard deviation, $s=\sqrt{\sum_{i}\left[\left(x_{i}-\langle x\rangle\right)^{2}\right] /(n-1)}$

[^0]
H 3-1; Z A1.6 Mathematics

scientific notation - all digits given are significant figures
significant figures
all nonzero digits significant: 489 has 3 sig figs, 111.1 four
constants, exact numbers, defined quantities - infinite number of sig figs
zeros
leading - preceding first nonzero digit, not significant: 0.0046 has two sig fig
captive - surrounded by nonzero digits, significant: 1005 has four sig fig
trailing - at end of number, significant when a decimal point is present: 13.620 has five sig figs, 150 two
rounding - never round off intermediate results, only at the end of the calculation
Harris frequently carries extra nonsignificant digits written as subscripts to prevent round-off errors

EX 1. A student makes the following six independent measurements of pressure, P, in torr 762.2, 761.8, 762.0, 761.5, 762.2, and 760.0.

Calculate the average value of P and its standard deviation. (NOTE: useful for lab reports!)

H 3-2 Significant Figures in Arithmetic

multiplication and division - sig fig of final result same as least precise number used in the calculation
$8.247 \div 4.34=1.90023$
1.90
$2.3 \times 19.987=45.9701$
46
addition and subtraction - sig fig of final result has the same number of decimal places as the least precise number used in the calculation
$14+6.6+12.6=34.2$
$7.33-4.9=2.43$
34
2.4

EX 2. Concentration Calculations: A solution is made by transferring 1 mL of a 0.12453 M solution, using a volumetric pipet, into a 200-mL volumetric flask. Calculate the final concentration. Remember that concentration
$=$ moles $/$ liter, $c=n / L$ where the number of moles is given by volume \times molarity, $n=V M$).
Solution: The volume of the flask has 5 significant figures and all other values have 4 . The calculations all involve multiplication and division, so the final answer should be expressed with 4 significant figures.

$$
1.000 \times 0.1245_{3} \mathrm{M} / 200.00=0.0006226_{5} \mathrm{M}=6.227 \times 10^{-4} \mathrm{M}
$$

ATOMS, MOLECULES, AND IONS

Democritus introduced the word atom (Greek, atomos - indivisible):
"According to convention there is a sweet and a bitter, a hot and a cold, and according to convention there is a color. In truth there are atoms and a void."

Democritus, 5th century B.C.
parts of Dalton's Atomic Theory:
"... there must be some point beyond which we cannot go in the division of matter. The existence of these ultimate particles of matter can scarcely be doubted, though they are probably much too small ever to be exhibited by microscopic improvements. I have chosen the word atom to signify those ultimate particles ... [which for] all homogeneous bodies are perfectly alike in weight, figure, etc. In other words, every particle of hydrogen is like every other particle of hydrogen"

John Dalton, 1808

Z 2.1-2.4 Atomic Theory of Matter

ancient Greek philosophy and Indian philosophy- all matter composed of the four "elements": air, earth, fire, water (Chinese five elements - air replaced by wood and metal); this concept prevailed in Western thought through the Middle Ages

Heraclitus (535-475 BC; Greek philosopher in Asia Minor) everything in a state of flux, becoming, element fire; Parmenides (515-450 BC, Greek philosopher in southern Italy) change is impossible, being

Leucippus (480-420 BC; Greek philosopher) disagreed and he and his student Democritus (460-371 BC; mathematician, astronomer, physicist; suggestions that he traveled in India, Babylon, Persia, Egypt, Ethiopia - concept of finite divisibility of matter appeared in these areas) - postulated existence of atoms tiny particles always in motion who interacted by collision; all change due to motion of atoms; Epicurus (341-270 BC, Greek philosopher) refined Democritus theory, he and the Pythagoreans were atomists
concept of the infinite indivisibility of matter also found early in $6^{\text {th }}$ century BC - Kashyapa or Kanada (Hindu sage), Vaisesika school of philosophy - cannot infinitely divide matter, has a limit (perhaps the eariest concept of an atom); Mimamsa school agreed; later Jainas (3 ${ }^{\text {rd }}$ century AD) were atomists

Socrates taught Plato and Plato taught Aristotle (384-322 BC, Greek philosopher, physicist, and biologist his ideas were and still are extremely influential in Western thought) - all knowledge must proceed directly from observation, only four elements, atoms rejected by Aristotle as it was implausible since it could not be reconciled with the world as perceived by the senses; Stoics, Cicero, Seneca, St. Augustine (354-430 AD now Western religion, also followed Aristotelian logic) opposed atomism

Lucretius (99-55 BC; Roman poet and philosopher) explained enumerous natural processes with the existence of the atom, even negating the necessity of a supreme being - branded an atheist and atomism condemned.
however there were pockets of resistence even within the church - Venerable Bede (762-735 AD) was an atomist
medieval Arabic speaking world the intellectual tradition of kalam supported atomism; Rhazes - Abu Bakr al-Razi (841-926; Persian physician, philosopher, astronomer, alchemist)
in the $12^{\text {th }}$ century the works of Aristotle were rediscovered which brought back the concept of an atom, controvery heightened in $14^{\text {th }}$ century. But Epicureanism contradicted orthodox Christian teachings so it was a "heresy".

Pierre Gassendi (1592-1655) got around the objection by stating that atoms were created by God
Rene Descartes (1596-1650), Issac Newton (1642-1727) and Robert Boyle (1627-1691) defended atomism and generally accepted by end of $17^{\text {th }}$ century.

1775 - Lavoisier did experiments on the combustion of mercury and formulated the law of conservation of mass

1799 - by examining the amount of oxygen in iron oxide Proust developed the law of definite proportion ("In a given chemical compound the proportions by mass of the elements that comprise it are fixed independent of the origin of the compound or its mode of preparation.")

1803 - Dalton states the law of multiple proportions ("When two elements form a series of compounds the masses of one element that combine with a fixed mass of the other element are in the ratio of small integers to each other.")

EX 3. Chlorine (Cl) and oxygen form four different binary compounds. Analysis gives the following

compound	mass of O combined with 1.0000 g Cl
A	0.22564 g
B	0.90255
C	1.3539
D	1.5795

results:
a) Show that the law of multiple proportions holds for these compounds.
b) If the formula of compound A is a multiple of $\mathrm{Cl}_{2} \mathrm{O}$, then determine the formulas of the other compounds.

Dalton used atomic theory to explain the law of multiple proportions by experimentation and analysis -
flaw did not realize that some elements were composed of more than one atom and that simplest combination was not always one atom of each element

1803 - Dalton's Atomic Theory

all matter consists of individual atoms, atoms are indestructible all atoms of the same element are identical, different elements have different kinds of atoms compounds formed from elements combining in small whole-number ratios

1808 - Guy-Lussac: gases (same T, P) combine in simple whole number ratios
1811 - Avogadro's Hypothesis - equal V (gas; same T, P) contain equal number of particles

Avogadro's law corrected Dalton's flaw and showed that many gases exist as diatomics

1860 - Cannizzaro: experiments convinced world that Avogadro was correct

Z 2.5 Building Blocks of the Atom

electrons, protons, neutrons (fundamental particles are actually electrons and quarks)

FIG II. 1909 - Mullikan: charge (oil drop experiment)

oil droplets charged - electric field between charged plates can change rate of decent of drop - can determine net charges on drop by comparing their rate of decent in the absence and presence of the electric field - net charges whole number multiples of the charge on the electron

FIG III. 1909-Geiger/Marsden (Rutherford) Experiment - scattering α particles off gold

if Thomson plum pudding model were correct a particles (nucleus of helium atom, ${ }_{2}^{4} \mathrm{He}^{2+}$) should go through gold foil with only small deflections - mostly small deflections observed, occasionally large deflection angles were seen and rarely, rebounds directly backward

Z 2.6 Basics of the Atom - An Introduction

small, dense world - example of an atom of gold diameter of a nucleus, $10^{-15} \mathrm{~m}$
diameter of atom, $10^{-10} \mathrm{~m}$
density of $2.3 \times 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$

$Z=$ atomic number (number of protons)
$A=$ mass number (sum of the numbers of protons and neutrons) - there can be isotopes

particle	charge	atomic mass units (amu)
electron	-1	0.000548579911
proton	+1	1.0072764669
neutron	0	1.0086649158

Two Isotopes of Sodium
leptons (e.g., electrons and neutrinos) and quarks are the true elementary particles of matter
proton consists of 2 up and 1 down quarks
charge: $2 \mathrm{u}(+2 / 3)+1 \mathrm{~d}(-1 / 3)=+1$
neutron consists of 1 up and 2 down quarks
charge: $1 u(+2 / 3)+2 d(-1 / 3)=0$

If the protons and neutrons were 10 cm wide,
then the quarks and electrons would be less than 0.1 mm and the entire atom would be about 10 km in diameter.
Rendering of structure of helium nucleus (two protons and two neutrons). Protons and neutrons are composed of three quarks where protons have an excess up quark and neutrons an excess of a down quark.

PERIODICITY AND NOMENCLATURE

"...I have tried to base a system on the magnitudes of the atomic weights of the elements. My first attempt in this respect was the following: I chose the smallest atomic weights and arranged them according to the sizes of their atomic weights. This showed that there existed a periodicity in the properties of these simple substances and that even according to their atomicity [valence] the elements followed one another in the arithmetical sequence of their atomic weights."

Dimitri Ivanovich Mcndeleyev (Mendeleev), 1869
"The periodicity in the properties of the elements is connected with the continuing build up and completion of the various electron groups that takes place with increasing atomic number."

Niels Henrik David Bohr, 1923
(Nobel Prize in Physics in 1922 "for his services in the investigation of the structure of atoms and of the radiation emanating from them".)

Z 2.8 The Periodic Table, Its Organization, Chemistry (a beginning ...)

1A (1)														net			$\begin{array}{r} 8 \mathrm{~A} \\ (18) \\ \hline \end{array}$
1 \mathbf{H} 1.008	$\begin{aligned} & \text { 2A } \\ & \text { (2) } \end{aligned}$											$\begin{gathered} 3 A \\ (13) \end{gathered}$	$\begin{gathered} \text { 4A } \\ (14) \end{gathered}$	$\begin{gathered} 5 \mathrm{~A} \\ (15) \end{gathered}$	$\begin{gathered} 6 \mathrm{~A} \\ (16) \end{gathered}$	$\begin{gathered} 7 \mathrm{~A} \\ (17) \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{He} \end{gathered}$ 4.0026
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.0122 \end{gathered}$								metals			5 B 10.81	6 \mathbf{C} 12.011	$\begin{gathered} 7 \\ \mathrm{~N} \\ 14.007 \end{gathered}$	8 \mathbf{O} 15.999	$\begin{gathered} 9 \\ \text { F } \\ 18.998 \end{gathered}$	$\begin{gathered} \hline 10 \\ \mathrm{Ne} \\ 0.180 \\ \hline \end{gathered}$
11 Na 22.990	12 $\mathbf{M g}$ 24.305	$\begin{aligned} & \text { 3B } \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & \text { 4B } \\ & (4) \end{aligned}$	$\begin{gathered} 5 B \\ (5) \end{gathered}$	6B (6)	$\begin{aligned} & \text { 7B } \\ & (7) \end{aligned}$	(8)	$\begin{aligned} & \text { 8B } \\ & \text { (9) } \end{aligned}$	(10)	$\begin{gathered} \text { 1B } \\ (11) \end{gathered}$	$\begin{gathered} 2 \mathrm{~B} \\ (12) \end{gathered}$	13 AI 26.982	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.085 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.974 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \text { CI } \\ 35.45 \end{gathered}$	18 $\mathbf{A r}$ 39.95
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.098 \end{gathered}$	20 Ca	21 Sc 44.956	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47 \end{gathered}$	23 V 50.942	$\begin{gathered} 24 \\ \mathrm{Cr} \end{gathered}$	$\begin{array}{\|c} 25 \\ \mathbf{M n} \end{array}$ 54.938	$\begin{array}{\|c} 26 \\ \text { Fe } \\ 55.85 \end{array}$	$\begin{array}{\|c\|} \hline 27 \\ \text { Co } \end{array}$ 58.933	28 $\mathbf{N i}$ 58.693	$\begin{array}{\|c\|c} 29 \\ \mathrm{Cu} \\ 63.55 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \end{aligned}$ 65.4	31 $\mathbf{G a}$	$\begin{gathered} 32 \\ \mathrm{Ge} \\ 7263 \end{gathered}$	33 As 74.922	34 Se 78.97	35 Br 79.904	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{array}{\|c\|} \hline 37 \\ \mathbf{R b} \\ 85.468 \end{array}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$	$\begin{array}{\|c\|} \hline 39 \\ \mathbf{Y} \\ 88.906 \\ \hline \end{array}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{array}{\|c\|} \hline 41 \\ \mathbf{N b} \\ 92.906 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 42 \\ \text { Mo } \\ 95.95 \\ \hline \end{array}$	$\begin{gathered} 43 \\ \text { Tc } \\ (97 / 8) \end{gathered}$	$\begin{array}{\|c} \hline 44 \\ \text { Ru } \\ 101.1 \end{array}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{array}{\|c\|} \hline 46 \\ \text { Pd } \\ 106.42 \\ \hline \end{array}$		48 Cd 112.41	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	50 Sn 118.71	51 Sb 121.76	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.6 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90 \end{gathered}$	$\begin{array}{\|c\|} \hline 54 \\ \mathbf{X e} \\ 131.29 \end{array}$
55 Cs 132.91	56 Ba 137.33	57 La 138.91	$\begin{gathered} \mathbf{7 2} \\ \mathbf{H f} \\ 178.5 \end{gathered}$	73 Ta 180.95	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.84 \end{gathered}$	75 Re 186.21	$\begin{array}{\|c\|} \hline 76 \\ \text { Os } \\ 190.2 \end{array}$	77 $\mathbf{I r}$ 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	$\begin{gathered} \hline 82 \\ \mathbf{P b} \\ 207.2 \end{gathered}$	83 Bi 208.98	84 Po (209)	$\begin{gathered} \hline 85 \\ \text { At } \\ (210) \end{gathered}$	86 $\mathbf{R n}$ (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 $\mathbf{R f}$ (267)	105 Db (268)	106 Sg (269)	107 Bh (271)	$\begin{array}{\|c} \hline 108 \\ \mathbf{H s} \\ (277) \\ \hline \end{array}$	109 $\mathbf{M t}$ $(276 / 7)$	110 Ds (281)	111 $\mathbf{R g}$ (282)	$\begin{gathered} \hline 112 \\ \text { Cn } \\ (285) \\ \hline \end{gathered}$	113 Nh (286)	$\begin{gathered} 114 \\ \text { FI } \\ (289) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 115 \\ \text { Mc } \\ (290) \\ \hline \end{array}$	$\begin{gathered} 116 \\ \mathbf{L v} \\ (293) \end{gathered}$	$\begin{array}{\|c\|} \hline 117 \\ \text { Ts } \\ (294) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 118 \\ \mathbf{O g} \\ (294) \\ \hline \end{array}$

Lanthanides	58 Ce 140.12	59 Pr 140.91	$\underset{144.24}{\mathbf{N d}}$	Pm (145)	Sm	$\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} \mathbf{G d} \\ 157.3 \end{gathered}$	$\begin{array}{\|c\|} \hline 65 \\ \text { Tb } \\ 158.93 \end{array}$	66 Dy 162.50	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} \mathrm{Er} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ 168.93 \end{gathered}$	$\begin{array}{\|c\|} \hline 70 \\ \text { Yb } \\ 173.05 \end{array}$	$\begin{array}{\|c\|} \hline 71 \\ \mathbf{L u} \\ 174.97 \end{array}$
Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	r
	232.04	231.0	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Major Classifications
metals
nonmetals
metalloids
Electronegativity, increases
across a period
up a group

Periods/Groups

main group
transition
lanthanides
actinides

Main Group Elements
alkali metals
alkaline earth metals chalcogens halogens noble gases

3D Periodic Table, Roy Alexander, 1965 (Chicago museum science exhibit designer)

ADOMAH
Periodic Table,
Valery Tsimmerman,
2006
$l=3$

Spiral Periodic Table, Theodor Benfey, 1964

s
Marks Brothers’ Periodic Table, 2010

7 oldest known metals not modern spelling __ium most common ending 5 end with __um

ACTINIUM	Ac	GOLD	Au	polonium	Po
ALUMINUM	Al	hafnium	Hf	POTASSIUM	K
americium	Am	hassium	Hs	praseodymium	Pr
ANTIMONY	Sb	HELIUM	He	promethium	Pm
ARGON	Ar	holmium	Ho	protactinium	Pa
ARSENIC	As	HYDROGEN	H	RADIUM	Ra
astatine	At	indium	In	RADON	Rn
BARIUM	Ba	IODINE	1	rhenium	Re
berkelium	Bk	iridium	Ir	rhodium	Rh
BERYLLIUM	Be	IRON	Fe	roentgenium	Rg
BISMUTH	Bi	KRYPTON	Kr	RUBIDIUM	Rb
bohrium	Bh	LANTHANUM	La	ruthenium	Ru
BORON	B	lawrencium	Lr	rutherfordium	Rf
BROMINE	Br	LEAD	Pb	samarium	Sa
CADMIUM	Cd	LITHIUM	Li	scandium	Sc
CALCIUM	Ca	livermorium	Lv	seaborgium	Sg
californium	Cf	lutetium	Lu	SELENIUM	Se
CARBON	C	MAGNESIUM	Mg	SILICON	Si
cerium	Ce	MANGANESE	Mn	SILVER	Ag
CESIUM	Cs	meitnerium	Mt	SODIUM	Na
CHLORINE	Cl	mendelevium	Md	STRONTIUM	Sr
CHROMIUM	Cr	MERCURY	Hg	SULFUR	S
COBALT	Co	molybdenum	Mo	tantalum	Ta
copernecium	Cn	moscovium	Mc	technetium	Tc
COPPER	Cu	neodymium	Nd	TELLURIUM	Te
curium	Cm	NEON	Ne	tennessine	Ts
darmstadtium	Ds	neptunium	Np	terbium	Tb
dubnium	Db	NICKEL	Ni	thallium	TI
dysprosium	Dy	nihonium	Nh	thorium	Th
einsteinium	Es	niobium	Nb	thulium	Tm
erbium	Er	NITROGEN	N	TIN	Sn
europium	Eu	nobelium	No	titanium	Ti
fermium	Fm	oganesson	Og	TUNGSTEN	W
flevorium	FI	osmium	Os	URANIUM	U
FLUORINE	F	OXYGEN	0	vanadium	V
francium	Fr	palladium	Pd	XENON	Xe
gadolinium	Gd	PHOSPHORUS	P	ytterbium	Yb
gallium	Ga	PLATINUM	Pt	yttrium	Yr
germanium	Ge	PLUTONIUM	Pu	ZINC	Zn
				zirconium	Zr

halogens end with \qquad ine, non-halogen diatomic gases with \qquad gen; noble gases (not He), B, C, Si with ___on

He

Li	Be																	
Na	Mg				Si	P	S	Cl	Ar									
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og	
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Z 2.7, 2.9 Nomenclature of Some Monatomic and Polyatomic Ions (Know)

Positive Ions(Cations) ${ }^{1}$

Negative Ions (Anions) ${ }^{1}$

(note similarity in nomenclature between A and B groups)

[^1]Compounds (Metalloid Can Be Substituted for Nonmetal) ${ }^{1}$

Ionic (Cation-Anion)	Covalent (Nonmetals)		
	Nonmetal-Nonmetal	Compounds Containing Hydrogen	
		H-Nonmetal	H-Oxyanion
Rule: Name of cation + name of anion (word "ion" dropped). Examples: $\mathrm{ZnSO}_{4} \quad$ zinc sulfate NaNO_{2} sodium nitrite CaCl_{2} calcium chloride $\mathrm{Fe}_{3} \mathrm{~N}_{2}$ iron(II) nitride $\mathrm{Li}_{2} \mathrm{CO}_{3}$ lithium carbonate $\mathrm{NH}_{4} \mathrm{I}$ ammonium iodide $\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}$ copper(II) iodate BaH_{2} barium hydride Comment: The name does not indicate the numbers of cations and anions because there is only one possibility for the ions to combine to form a compound.	Rule: (a) Less electronegative element generally first (exception: when one of the elements is hydrogen). (b) Greek prefixes specify number of atoms of each kind (c) Initial prefix mono dropped. Prefixes: Examples: SCl_{6} sulfur hexachloride $\mathrm{N}_{2} \mathrm{O}_{4}$ dinitrogen tetroxide CO carbon monoxide CO_{2} carbon dioxide NO_{2} nitrogen dioxide $\mathrm{N}_{2} \mathrm{O}$ dinitrogen monoxide Comment: Tetraoxide becomes tetroxide, monooxide becomes monoxide, etc., so that the name sounds better	Rule 1: (without the presence of $\mathrm{H}_{2} \mathrm{O}$) hydrogen _ide Examples: HCl hydrogen chloride HF hydrogen fluoride $\mathrm{H}_{2} \mathrm{~S}$ hydrogen sulfide $\mathrm{H}_{2} \mathrm{Se}$ hydrogen selenide Rule 2: (H acids - when dissolved in $\mathrm{H}_{2} \mathrm{O}$) hydro_ic acid Examples: HCl hydrochloric acid HF hydrofluoric acid $\mathrm{H}_{2} \mathrm{~S}$ hydrosulfuric acid $\mathrm{H}_{2} \mathrm{Se}$ hydroselenic acid Comment: (a) These H -containing compounds are named as if they were ionic. (b) Often the (aq) in the formulas of the acids is omitted when it is obvious from the context that they are acids.	Rule 1: (without the presence of $\mathrm{H}_{2} \mathrm{O}$) like ionic compounds: cation + anion hydrogen hypo_ite hydrogen _ite hydrogen _ate hydrogen per_ate Rule 2: (HO acids - when dissolved in $\mathrm{H}_{2} \mathrm{O}$) hypo_ous acid _ous acid _ic acid per_ic acid Examples: HClO hypochlorous acid HClO_{2} chlorous acid HClO_{3} chloric acid HClO_{4} perchloric acid HNO_{2} nitrous acid HNO_{3} nitric acid $\mathrm{H}_{2} \mathrm{SO}_{3}$ sulfurous acid $\mathrm{H}_{2} \mathrm{SO}_{4}$ sulfuric acid $\mathrm{H}_{3} \mathrm{PO}_{4}$ phosphoric acid Comment: The $(a q)$ is usually omitted.

${ }^{1}$ adapted from Gerhard Lind, Journal of Chemical Education, 69, 613 (1992) when we study acids

Ordering of elements in formula of binary molecular compounds: order according to Group number, bottom to top; for any pair, element furthest right behaves as the "anion" (H, O need to be memorized):

	B	Si C	Sb As P N	H	Te Se S	I Br Cl	O	F
Group \#	3 A	4 A	5 A		6 A	7 A		

[^0]: LSL - Lower Set Limit
 USL -Upper Set Limit

[^1]: ${ }^{1}$ adapted from Gerhard Lind, Journal of Chemical Education, 69, 613 (1992)

