MATTER AND MEASUREMENT

"... those sciences are vain and full of errors that are not born from experiment, the mother of all certainty, and that do not end with one clear experiment." Leonardo da Vinci. 1452-1519

"When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge but you have scarcely, in your thoughts, advanced to the stage of science." William Thomson, Lord Kelvin, 1891

Z 1.3 The Scientific Method (good approach to use in lab)

Science (Latin scientia, scire, to know) provides a framework for systematically studying ourselves, our environment, and the universe. Progress in science is cumulative - building upon and extending prior knowledge via what has come to be known as the scientific method: the interplay of observations, judicious reasoning, predictions and new experiments to test the predictions.

Chemistry is broadly concerned with the analysis of substances (composition, structure, properties), their transformation into other sub the

substances (chemical r these transformations.	eactions), and	the energy	changes	that accon	npany	Theory		
Experiments require the matter – anything that of H 1-1, Table 1-3	e ability to trans occupies space Inits of Mea	sform, chara e and has m I suremen	acterize, a nass. I t	and/or me	asure	modified as needed	Prec	diction
Fundame	ental SI Units				SI Pr	efixes		
Quantity	Unit	Symbol	Factor	Prefix	Symbol	Factor	Prefix	Symbol
length	meter	m	10 ⁻¹	deci	d	10	deca	da
mass	kilogram	kg	10 ⁻²	centi	С	10 ²	hecto	h
time	second	S	10 ⁻³	milli	m	10 ³	kilo	k
temperature	kelvin	К	10 ⁻⁶	micro	μ	10 ⁶	mega	М
amount of substance	mole	mol	10 ⁻⁹	nano	n	10 ⁹	giga	G
electric current	ampere	А	10 ⁻¹²	pico	р	10 ¹²	tera	Т
luminous intensity	candela	cd	10 ⁻¹⁵	femto	f	10 ¹⁵	peta	Р
			10 ⁻¹⁸	atto	а	10 ¹⁸	exa	Е
			10 ⁻²¹	zepto	z	10 ²¹	zetta	Z
			10 ⁻²⁴	yocto	у	10 ²⁴	yotta	Y

H 1

H 3-3; Z A1.5-A1.6 Precision, Accuracy, Experimental Error

accuracy - deviation from true value (systematic error)

mean

standard deviation,
$$s = \sqrt{\sum_{i} [(x_i - \langle x \rangle)^2]/(n-1)}$$

True Value Measured Value Tolera Accurate : No Accurate : No Accurate : Yes Accurate : Yes Precise : No Precise : Yes Precise : No Precise : Yes

precision – agreement of replicate measurements (random error)

H 3-1; Z A1.6 Mathematics

scientific notation - all digits given are significant figures

significant figures

all nonzero digits significant: 489 has 3 sig figs, 111.1 four

constants, exact numbers, defined quantities - infinite number of sig figs

zeros

leading - preceding first nonzero digit, not significant: 0.0046 has two sig fig

captive - surrounded by nonzero digits, significant: 1005 has four sig fig

trailing – at end of number, significant when a decimal point is present: 13.620 has five sig figs, 150 two

rounding - never round off intermediate results, only at the end of the calculation

Harris frequently carries extra nonsignificant digits written as subscripts to prevent round-off errors

EX 1. A student makes the following six independent measurements of pressure, *P*, in torr 762.2, 761.8, 762.0, 761.5, 762.2, and 760.0. Calculate the average value of *P* and its standard deviation. (NOTE: useful for lab reports!)

H 3-2 Significant Figures in Arithmetic

multiplication and division - sig fig of final result same as least precise number used in the calculation

8.247 ÷ 4.34 = 1.90023 1.90 2.3 × 19.987 = 45.9701 46

addition and subtraction – sig fig of final result has the same number of decimal places as the least precise number used in the calculation

 $\begin{array}{c} 14 + 6.6 + 12.6 = 34.2 \\ 34 \end{array} \qquad \begin{array}{c} 7.33 - 4.9 = 2.43 \\ 2.4 \end{array}$

EX 2. Concentration Calculations: A solution is made by transferring 1 mL of a 0.1245₃ M solution, using a volumetric pipet, into a 200-mL volumetric flask. Calculate the final concentration. Remember that concentration

= moles / liter, c = n/L where the number of moles is given by volume × molarity, n = VM).

Solution: The volume of the flask has 5 significant figures and all other values have 4. The calculations all involve multiplication and division, so the final answer should be expressed with 4 significant figures.

 $1.000 \times 0.1245_3$ M / 200.00 = 0.0006226_5 M = 6.227 \times 10^{-4} M

ATOMS, MOLECULES, AND IONS

"According to convention there is a sweet and a bitter, a hot and a cold, and according to convention there is a color. In truth there are atoms and a void." Democritus, 5th century B.C.

parts of Dalton's Atomic Theory:

"... there must be some point beyond which we cannot go in the division of matter. The existence of these ultimate particles of matter can scarcely be doubted, though they are probably much too small ever to be exhibited by microscopic improvements. I have chosen the word atom to signify those ultimate particles ... [which for] all homogeneous bodies are perfectly alike in weight, figure, etc. In other words, every particle of hydrogen is like every other particle of hydrogen" John Dalton, 1808

Z 2.1-2.4 Atomic Theory of Matter

ancient Greek philosophy and Indian philosophy– all matter composed of the four "elements": air, earth, fire, water (Chinese five elements – air replaced by wood and metal); this concept prevailed in Western though through the Middle Ages

Heraclitus (535-475 BC; Greek philosopher in Asia Minor) everything in a state of flux, becoming, element fire; Parmenides (515-450 BC, Greek philosopher in southern Italy) change is impossible, being

Leucippus (480-420 BC; Greek philosopher) disagreed and he and his student Democritus (460-371 BC; mathematician, astronomer, physicist; suggestions that he traveled in India, Babylon, Persia, Egypt, Ethiopia – concept of finite divisibility of matter appeared in these areas) – postulated existence of atoms – tiny particles always in motion who interacted by collision; all change due to motion of atoms; Epicurus (341–270 BC, Greek philosopher) refined Democritus theory, he and the Pythagoreans were atomists

concept of the infinite indivisibility of matter also found early in 6th century BC – Kashyapa or Kanada (Hindu sage), Vaisesika school of philosophy – cannot infinitely divide matter, has a limit (perhaps the eariest concept of an atom); Mimamsa school agreed; later Jainas (3rd century AD) were atomists

Socrates taught Plato and Plato taught Aristotle (384-322 BC, Greek philosopher, physicist, and biologist – his ideas were and still are extremely influential in Western thought) – all knowledge must proceed directly from observation, only four elements, atoms rejected by Aristotle as it was implausible since it could not be reconciled with the world as perceived by the senses; Stoics, Cicero, Seneca, St. Augustine (354-430 AD – now Western religion, also followed Aristotelian logic) opposed atomism

Lucretius (99-55 BC; Roman poet and philosopher) explained enumerous natural processes with the existence of the atom, even negating the necessity of a supreme being – branded an atheist and atomism condemned.

however there were pockets of resistence even within the church - Venerable Bede (762-735 AD) was an atomist

medieval Arabic speaking world the intellectual tradition of kalam supported atomism; Rhazes - Abu Bakr al-Razi (841-926; Persian physician, philosopher, astronomer, alchemist)

in the 12th century the works of Aristotle were rediscovered which brought back the concept of an atom, controvery heightened in 14th century. But Epicureanism contradicted orthodox Christian teachings so it was a "heresy".

Pierre Gassendi (1592-1655) got around the objection by stating that atoms were created by God

Rene Descartes (1596-1650), Issac Newton (1642-1727) and Robert Boyle (1627-1691) defended atomism and generally accepted by end of 17th century.

1775 - Lavoisier did experiments on the combustion of mercury and formulated the **law of conservation** of mass

1799 – by examining the amount of oxygen in iron oxide Proust developed the **law of definite proportion** ("In a given chemical compound the proportions by mass of the elements that comprise it are fixed independent of the origin of the compound or its mode of preparation.")

1803 – Dalton states the **law of multiple proportions** ("When two elements form a series of compounds the masses of one element that combine with a fixed mass of the other element are in the ratio of small integers to each other.")

EX 3. Chlor	ine (CI) and oxygen for	m four different binary compounds. Analysis gives the following
compound	mass of O combined with 1.0000 g Cl	 a) Show that the law of multiple proportions holds for these compounds.
А	0.22564 g	

b) If the formula of compound A is a multiple of Cl_2O , then determine the formulas of the other compounds.

Dalton used atomic theory to explain the law of multiple proportions by experimentation and analysis -

flaw did not realize that some elements were composed of more than one atom and that simplest combination was not always one atom of each element

1803 – Dalton's Atomic Theory

В

С

D

0.90255

1.3539

1.5795

all matter consists of individual atoms, atoms are indestructible all atoms of the same element are identical, different elements have different kinds of atoms compounds formed from elements combining in small whole-number ratios

1808 – Guy-Lussac: gases (same *T*, *P*) combine in simple whole number ratios

1811 – **Avogadro's Hypothesis** - equal V (gas; same T, P) contain equal number of particles

Avogadro's law corrected Dalton's flaw and showed that many gases exist as diatomics

1860 - Cannizzaro: experiments convinced world that Avogadro was correct

oil droplets charged – electric field between charged plates can change rate of decent of drop - can determine net charges on drop by comparing their rate of decent in the absence and presence of the electric field – net charges whole number multiples of the charge on the electron

FIG III. 1909 - Geiger/Marsden (Rutherford) Experiment - scattering α particles off gold

a cloud of charge)

magnetic field (N \rightarrow S) and electric field (– \rightarrow +)

magnetic field alone deflects the electron beam up while the electric field deflects it down – from the strengths of the two fields when there is no deflection one can calculate the velocity of the electrons – the charge to mass ratio is found from the velocity and the strength of the electric field alone

1898 –Rutherford discovered $\alpha,\,\beta$ particles – Nobel Prize 1908

1909 – Geiger and Marsden: scattering α particles off gold

- 1911 Rutherford's explanation FIG III
- 1919 proton discovered by Rutherford
- 1932 neutron discovered by Chadwick

Rutherford Nuclear Model of the Atom nearly all the volume occupied by electrons, nearly all the mass concentrated in a small positively charged nucleus

if Thomson plum pudding model were correct α particles (nucleus of helium atom, 4_2 He²⁺) should go through gold foil with only small deflections – mostly small deflections observed, occasionally large deflection angles were seen and rarely, rebounds directly backward

Z 2.5 Building Blocks of the Atom

electrons, protons, neutrons

electrons and quarks)

(fundamental particles are actually

Z = atomic number (number of protons)

A = mass number (sum of the numbers of protons and neutrons) – there can be isotopes

particle	charge	atomic mass units (amu)
electron	-1	0.000548579911
proton	+1	1.0072764669
neutron	0	1.0086649158

Two Isotopes of Sodium

PERIODICITY AND NOMENCLATURE

"...I have tried to base a system on the magnitudes of the atomic weights of the elements. My first attempt in this respect was the following: I chose the smallest atomic weights and arranged them according to the sizes of their atomic weights. This showed that there existed a periodicity in the properties of these simple substances and that even according to their atomicity [valence] the elements followed one another in the arithmetical sequence of their atomic weights."

Dimitri Ivanovich Mcndeleyev (Mendeleev), 1869

"The periodicity in the properties of the elements is connected with the continuing build up and completion of the various electron groups that takes place with increasing atomic number."

Niels Henrik David Bohr, 1923

(Nobel Prize in Physics in 1922 "for his services in the investigation of the structure of atoms and of the radiation emanating from them".)

Z 2.8 The Periodic Table, Its Organization, Chemistry (a beginning ...)

1A																	8A
(1)													nor	nmeta	s		(18)
1																	2
н	2A											ЗA	4A	5A	6A	7A	He
1.008	(2)	_										(13)	(14)	(15)	(16)	(17)	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
6.94	9.0122								metals	5		10.81	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg	3B	4B	5B	6B	7B		- 8B		- 1B	2B	AI	Si	Р	S	CI	Ar
22.990	24.305	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	26.982	28.085	30.974	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
κ	Ca	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.956	47.867	50.942	51.996	54.938	55.85	58.933	58.693	63.55	65.4	69.723	72.63	74.922	78.97	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Хе
85.468	87.62	88.906	91.22	92.906	95.95	(97/8)	101.1	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ТІ	Pb	Bi	Ро	At	Rn
132.91	137.33	138.91	178.5	180.95	183.84	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
(223)	(226)	(227)	(267)	(268)	(269)	(271)	(277)	(276/7)	(281)	(282)	(285)	(286)	(289)	(290)	(293)	(294)	(294)
			مامم	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	nmani	ues	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				140.12	140.91	144.24	(145)	150.4	151.96	157.3	158.93	162.50	164.93	167.26	168.93	173.05	174.97
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
		Actini	des	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	ES	Fm	Md	NO	Lr
				232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Major Classifications

metals nonmetals metalloids

Electronegativity, increases across a period

up a group

Periods/Groups

main group transition lanthanides actinides

Main Group Elements

alkali metals alkaline earth metals chalcogens halogens noble gases

L	eft \$	Ste	pР	eric	odio	: Та	ıble	, C	har	les	Jar	net,	19	29																н	He
			•																											Li	Be
																								В	С	Ν	0	F	Ne	Na	Mg
																								AI	Si	Ρ	S	CI	Ar	к	Ca
														Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	Rb	Sr
														Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe	Cs	Ba
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	Fr	Ra
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og	119	120

3D Periodic Table, Roy Alexander, 1965 (Chicago museum science exhibit designer)

Spiral Periodic Table, Theodor Benfey, 1964

Marks Brothers' Periodic Table, 2010

ACT		M		Ac		GO	_D				Au		poloni		184		Po
ALU	ricium			AI Am		han											n Dr
				Am		nas							prase	oaym	lum		Pí Dm
		NI		٥D		holp					Пе		protoc	tiniun	n n		
				A							по ப		D A DII		11		Ра
AKJ		•		A5 ^+		indi					П In						Кd Dn
				Ra							111 I		rhoniu				
bork	olium			BL		iridi					lr.		rhodiu	um Im			Dh
BED				Bo			N				Fo		roopte	nnin	m		Da
BIGN				Bi				N			Kr Kr		DIID		11		Ry Dh
bobr	ium	1		Bh									ruthor				Du
BOR				B			onciu				La Ir		ruthor	fordiu	m		Df
BRO		F		Br							Ph		samai	rium			50 80
	MILI			Cd									scand	lium			Sc
	CILIN	Л		Ca		livor	moriu	ım					seaho	raiun	h		Sa
calif	orniur	m m		Cf			ium	4111					SEL F		1		Se
CAR	RON	 		C		ΜΔ	SNES	MIII			Ma		SILIC	ON	•		Si
ceriu	im	•		Ce		ΜΔΙ		JESE			Mn		SIL VE				Δa
CES	ILIM			Cs.		meit	neriu	m			Mt		SODI				Na
CHI	ORIN	JF		CI		mer	delev	/ium			Md		STRO		M		Sr
CHR		JM		Cr		MF		Y			Ha		SUI F	UR			S
COB	BALT			Co		mol	/bder	num			Mo		tantalı	um			Та
cope	erneci	ium		Cn		mos	coviu	m			Mc		techno	etium			Tc
COP	PER	GITT		Cu		neo	dvmiu	im			Nd		TELL	URIU	М		Te
curiu	im			Cm	1	NEC	DN				Ne		tenne	ssine			Ts
darm	nstad	tium		Ds		nep	tuniur	n			Np		terbiu	m			Tb
dubr	nium			Db		NIC	KEL				Ni		thalliu	m			TI
dysp	orosiu	m		Dv		niho	nium				Nh		thoriu	m			Th
einst	teiniu	m		És		niob	ium				Nb		thuliur	m			Tm
erbiu	um			Er		NIT	ROG	EN			Ν		TIN				Sn
euro	pium	1		Eu		nob	elium	1			No		titaniu	m			Ti
ferm	ium			Fm		oga	nesso	n			Og		TUNG	STE	Ν		W
flevo	orium			FI		osm	nium				Os		URAN	MUIV			U
FLU	ORIN	NE		F		ΟΧ	YGEN	1			0		vanad	dium			V
franc	cium			Fr		palla	adiun	n			Pd		XENC	ON			Хе
gado	oliniur	n		Gd		PHO	DSPF	IORL	JS		Ρ		ytterb	ium			Yb
galliu	um			Ga		PL A	TINU	JM			Pt		yttriur	n			Yr
germ	naniu	m		Ge		PLU	ITON	IUM			Pu		ZINC				Zn
													zircon	ium			Zr
h	aloge	ns en	d with noble	in gase	e, non s (not	-halog He), I	gen dia 3, C, S	atomic Si with	gase o	s with n	۱g	en;					Не
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											ΑΙ	Si	Ρ	S	CI	Ar
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Хе
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
				Ce	Pr	Nd	Pm	Sm	Fυ	Gd	Th	Dv	Hο	Fr	Tm	Yh	111
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	 Fm	Md	No	Lr

							1
	hydride	9	H⁻	oxi	de	O ²⁻	
	fluoride)	F⁻	sul	fide	S ²⁻	
	chloride	Э	CI-	nitr	ide	N ³⁻	
	bromide	е	Br⁻	pho	osphide	P ³⁻	
	iodide		-	r	nonatomic an	ions end with	ide
	hydroxi	ide	OH⁻	sul	fite	SO_3^{2-}	
	peroxid	le	O_2^{2-}	hyc	drogen sulfite	HSO_3^{2-}	
	cyanide	e	CN⁻	sul	fate	SO_4^{2-}	
	nitrite		NO_2^-	hyc	drogen sulfate	HSO ₄ ²⁻	
	nitrate		NO ₃	chr	omate	CrO_4^{2-}	
	carbona	ate	CO_{3}^{2-}	dic	hromate	$Cr_2O_7^{2-}$	
	hydroge	en carbonate	HCO ₃	per	manganate	MnO ₄	
	phosph	ate	PO_4^{3-}	hyp	ochlorite	CIO-	ess oxygen
	hydroge	en phosphat	e HPO ₄ ²⁻	chl	orite		ite
	dihydro	gen phosph	ate H ₂ PO ₄	chl	orate		more oxygen
	arsenat	te	AsO ₄ ³⁻	per	chlorate	CIO ₄	
	hydroni	ium 斗	H ₃ O ⁺	📍 me	rcury(I)	Hg_2^{2+}	
	ammor	hium H ₃ 0 ⁺	NH_4^+	NH +			
			ch	arge increases	s		
		3A	4A	5A	6A	7A	_
		borate BO ₃ ³⁻ i	CO32-	nitrate NO_3^{-1}		second pe different	eriod
		aluminate AIO ₄ ^{5–} i	silicate SiO4 ⁻ ii	PO43-	504 ²⁻	perchlorate CIO4	te increases
H Li Be Na Mg	Sc Ti V Cr Ma	B Al Fe Co Ni Cu Za Ga	K O F Ne Si P S CI Ar Ge As Se Br Kr	arsenate AsO ₄ ^{3–}			_
Rb Sr Cs Ba Fr Ra	Y Zr Nb Mo Tc Lu Hf Ta W Re Lr Rf Db Sg Bh La Ce Pr Nd Pm Ac Th Pa U No	Ru Rh Pd Ag Cd In Os Ir Pt Au Hg TI Hs Mt Ds Rg Cn Nh Sm Eu Gd Tb Dy Ho Pu Am Cm Rk Cf Fs	Sn Sb Te I Xe Pb Bi Po At Rn Fl Mc Lv Ts Og Er Tm Yb Fm Md No	5B vanadate VO ₄ ³⁻	6B chromate CrO ₄ ²⁻ ii	7B permanganate MnO ⁻ ₄	e
				XO ₄ ³⁻	XO ₄ ²⁻	XO ₄ -	-

Z 2.7, 2.9 Nomenclature of Some Monatomic and Polyatomic Ions (Know)

Positive Ions(Cations)¹

Mona	atomic		
Only One	More Than One	Polyatomic	Na Mg Al Si P S Cl Ar K Ca S Ti V Cr Mn Fe Co Ni Cu Zo Ga Ge As S R Kr
Ion Possible	Ion Possible		Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Rule:	Rule:	Rule:	Fr Ra Lr Rf Db Sg Bh Hs Mt Ds Rg Ch Nh Fi Mc Lv Ts Og
Name of element + "ion".	(a) Newer rule: positive charges indicated by a	Special cases.	La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No
Examples:	roman numeral.	Examples:	Neutral sodium
Na ⁺ sodium ion		NH ⁺ ₄ ammonium ion	atom (Na) Minus 1 electron
Mg ²⁺ magnesium ion	Examples:	H_3O^+ hydronium ion	Sodium ion (Na ⁺)
H ⁺ hydrogen ion	Fe ²⁺ iron(II) ion	Hg ₂ ²⁺ mercury(I) ion	0.17
Al ³⁺ aluminum ion	Fe ³⁺ iron(III) ion		
Ag ⁺ silver ion	Cu ⁺ copper(I) ion	Comment:	11+ 11+
Zn ²⁺ zinc ion	Cu ²⁺ copper(II) ion	Hg_2^{2+} is Hg^+ Hg ⁺ but	
Cd ²⁺ cadmium ion		Hg ⁺ does not exist,	
	(b) Older rule (still used):	therefore mercury(I) ion	10 electrons
Comment:	Latin stem for the element	IS Hg ⁺ . (Hg ²⁺ IS mer-	11 electrons
The number of positive	+ "ous" for the lesser	cury(II) IOI, but that is a	Chloride ion
charges is not indicated	charge and + ic for the	monatornic ion.)	Plus 1 electron
in the name because it is	greater charge. (we will		Neutral chlorine atom (Cl)
not necessary, e.g.,	coordination compounds)		
Group I elements (1+)			
and Group II elements	Examples:		17+ 17+
(2+).	Fe ²⁺ ferrous ion		
	Fe ³⁺ ferric ion		17 electrons

18 electrons

Negative lons (Anions)¹

(note similarity in nomenclature between A and B groups)

Monotomio	Oxyanions (Cor	ntaining Oxygen)	Others and Exceptions
WONAtOTHIC	(Without Hydrogen)	Containing Hydrogen	Others and Exceptions
Rule:	Rule:	Rule:	Rule:
Stem of the ele-	least oxygen: hypo_ite ion	H - oxyanion: "hydrogen" +	These items do not follow
ment name +	less oxygen: _ite ion	name of oxyanion or "bi" +	simple rules: they must be
"ide".	more oxygen: _ate ion	oxyanion	memorized.
	most oxygen: per_ate ion		
Examples:		H ₂ - oxyanion: "dihydrogen" +	Examples:
H ⁻ hydride ion	Examples:	name of oxyanion	OH hydroxide ion
F- fluoride ion	CIO ⁻ hypochlorite ion		O ₂ ²⁻ peroxide ion
O ²⁻ oxide ion	$CIO_{\overline{2}}$ chlorite ion	Examples:	CN- cyanide ion
N ³⁻ nitride ion	CIO_{-}^{2} chlorate ion	HCO_{3}^{-} hydrogen carbonate	AsO_4^{3-} arsenate ion
	CIOT perchlorate ion	(or bicarbonate) ion	MnO ₄ permanganate ion
	SO_2^{4-} sulfite ion	HSO ₄ hydrogen sulfate	CrO_4^{2-} chromate ion
	SO_{2}^{2-} sulfate ion	(or bisulfate) ion	Cr ₂ O ₇ ²⁻ dichromate ion
		HPO ₄ ²⁻ hydrogen phosphate	Comments
	Comment:	ion	Comment:
	Halogens (except F) form all	$H_2PO_4^-$ dihydrogen phos-	Note that arsenate is a
	four ions. When only two of	phate ion	Group V element and forms
	the four ions exist, they are the	F	a polyatomic ion with oxygen
	-ite and the -ate ions.	Comment:	identical to phosphorus.
		H.CO. is not named according	Mn Group 7B
	CI Group 7A	to this rule because it is a com	Cr Group 6B
	S Group 6A	pound and not an ion.	As Group 5A, like PO_4^{3-}

¹adapted from Gerhard Lind, *Journal of Chemical Education*, 69, 613 (1992)

Compounds (Metalloid Can Be Substituted for Nonmetal)¹

		Covalent (Nonmetals)	
Ionic (Cation-Anion)	Nonmotal Nonmotal	Compounds Cor	ntaining Hydrogen
	Nonmetal-Nonmetal	H-Nonmetal	H-Oxyanion
Rule:	Rule:	Rule 1:	Rule 1:
Name of cation + name of anion (word "ion" dropped).	(a) Less electronegative element generally first (exception: when one of the elements is hydro-	(without the presence of H ₂ O) hydrogen _ide	(without the presence of H ₂ O) like ionic com- pounds: cation + anion
Examples: ZnSO ₄ zinc sulfate NaNO ₂ sodium nitrite CaCl ₂ calcium chloride Fe ₃ N ₂ iron(II) nitride	 gen). (b) Greek prefixes specify number of atoms of each kind (c) Initial prefix mono dropped. 	Examples:HClhydrogen chlorideHFhydrogen fluoride H_2S hydrogen sulfide H_2Se hydrogen selenide	hydrogen hypo_ite hydrogen _ite hydrogen _ate hydrogen per_ate
Li ₂ CO ₃ lithium carbonate NH ₄ I ammonium iodide Cu(IO ₃) ₂ copper(II) iodate BaH ₂ barium hydride Comment: The name does not indicate the numbers of cations and anions because there is only one possibility for the ions to combine to form a compound.	Prefixes: $1 = mono$ $6 = hexa$ $2 = di$ $7 = hepta$ $3 = tri$ $8 = octa$ $4 = tetra$ $9 = nona$ $5 = penta$ $10 = deca$ Examples: SCI ₆ sulfur hexachloride N_2O_4 dinitrogen tetroxideCOcarbon monoxideCO2carbon dioxideNO2nitrogen dioxideNO2nitrogen monoxideCO2carbon monoxideComment:Tetraoxide becomes tetroxide, monooxide becomes tetroxide, etc., sothat the name soundsbetter	Rule 2: (H acids - when dis- solved in H ₂ O) hydro_ic acid Examples: HCI hydrochloric acid HF hydrofluoric acid H ₂ S hydrosulfuric acid H ₂ Se hydroselenic acid Comment: (a) These H-containing compounds are named as if they were ionic. (b) Often the (<i>aq</i>) in the formulas of the acids is omitted when it is obvious from the context that they are acids.	Rule 2: (HO acids - when dissolved in H ₂ O) hypo_ous acid _ous acid _ic acid per_ic acid Examples: HCIO hypochlorous acid HCIO hypochlorous acid HCIO achloric acid HCIO hypochlorous acid HCIO hypochlorous acid HCIO hypochlorous acid HCIO achloric acid HCIO hypochlorous acid HCIO perchloric acid HNO2 nitrous acid HNO3 nitric acid H2SO3 sulfurious acid H_2SO4 sulfuric acid H_3PO4 phosphoric acid Comment: The (aq) is usually omitted.

¹ adapted from Gerhard Lind, *Journal of Chemical Education*, **69**, 613 (1992)

when we study acids

Li Be Na M	le Ig											R	C	N	0	E	Ma
Na M	lg											D	~	14	0	r	ING
4 0											_	AI	Si	Ρ	s	CI	Ar
K Ca	a S	4	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb S	ir 1	1	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs Ba	la L	u	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr R	la L	r	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Ho	Er	Tm	YЬ
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Ordering of elements in formula of binary molecular compounds: order according to Group number, bottom to top; for any pair, element furthest right behaves as the "anion" (H, O need to be memorized):

	В	Si C	Sb As P N	Η	Te Se S	I Br Cl	0	F
Group #	ЗA	4A	5A		6A	7A		